Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Simple map
Simple function
Measurable simple complex function
Random simple number
Random Boolean number
Bernoulli random boolean number
Formulation 0
A D3628: Random Boolean number $X \in \text{Random} \{ 0, 1 \}$ is a Bernoulli random boolean number with parameter $\theta \in [0, 1]$ if and only if
(1) \begin{equation} \mathbb{P}(X = 1) = \theta \end{equation}
(2) \begin{equation} \mathbb{P}(X = 0) = 1 - \theta \end{equation}
Child definitions
» D2854: Poisson random natural number
» D3999: Standard Bernoulli random boolean number
Results
» R2484: Moments of a Bernoulli random boolean number
» R4791: Probability for two independent standard Bernoulli random boolean numbers to coincide
» R2483: Variance of Bernoulli random boolean number
» R4947: Variance of standard Bernoulli random boolean number
» R5009: Bernoulli random boolean integer from a uniform random real number
» R3261: Probability for two independent Bernoulli random numbers to coincide
» R5226: Tight lower bound on the probability for two independent Bernoulli random boolean numbers to coincide
» R5284: Expectation of a Bernoulli random boolean number
» R5283: Expectation of a standard bernoulli random boolean number