ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Binary cartesian set product ▼ Binary relation ▼ Map ▼ Simple map ▼ Simple function ▼ Measurable simple complex function ▼ Random simple number ▼ Random Boolean number
Definition D207
Bernoulli random boolean number

A D3628: Random Boolean number $X \in \text{Random} \{ 0, 1 \}$ is a Bernoulli random boolean number with parameter $\theta \in [0, 1]$ if and only if
 (1) $$\mathbb{P}(X = 1) = \theta$$ (2) $$\mathbb{P}(X = 0) = 1 - \theta$$
Children
 ▶ Poisson random natural number ▶ Standard Bernoulli random boolean number
Results
 ▶ Expectation of a Bernoulli random boolean number ▶ Expectation of a standard bernoulli random boolean number ▶ Moments of a Bernoulli random boolean number ▶ Probability for two independent standard Bernoulli random boolean numbers to coincide ▶ Variance of Bernoulli random boolean number ▶ Variance of standard Bernoulli random boolean number