ThmDex – An index of mathematical definitions, results, and conjectures.
Probability for two independent standard Bernoulli random boolean numbers to coincide
Formulation 0
Let $X, Y \in \text{Bernoulli}(1 / 2)$ each be a D207: Bernoulli random boolean number such that
(i) $X, Y$ is an D2713: Independent random collection
Then \begin{equation} \mathbb{P}(X = Y) = \frac{1}{2} = \mathbb{P}(X \neq Y) \end{equation}
Proofs
Proof 0
Let $X, Y \in \text{Bernoulli}(1 / 2)$ each be a D207: Bernoulli random boolean number such that
(i) $X, Y$ is an D2713: Independent random collection