Let $X \in \mathsf{Random}(\mathbb{R}^N)$ be a D4383: Random euclidean real number such that
Let $t \in \mathbb{R}^N$ be a D4924: Euclidean real number.
(i) | \begin{equation} \exists \, a \in \mathbb{R}^N : \mathbb{P}(X = a) = 1 \end{equation} |
Then
\begin{equation}
\mathbb{E}(e^{i t \cdot X}) = e^{i t \cdot a}
\end{equation}