Let $M = (X, \mathcal{F}, \mu)$ be a D1158: Measure space.
Let $E_0, E_1, E_2, \ldots \in \mathcal{F}$ each be a D1109: Measurable set in $M$ such that
Let $E_0, E_1, E_2, \ldots \in \mathcal{F}$ each be a D1109: Measurable set in $M$ such that
(i) | \begin{equation} \exists \, n \in \mathbb{N} : \mu(E_n) < \infty \end{equation} |
Then
\begin{equation}
\mu \left( \bigcap_{n \in \mathbb{N}} E_n \right) < \infty
\end{equation}