Let $X = \{ 0, 1 \}^{\mathbb{N}}$ be the D12: Set of boolean standard sequences such that

(i) | $x : \mathbb{N} \to X$ is a D62: Sequence in $X$ |

(ii) | $z : \mathbb{N} \to \{ 0, 1 \}$ is a D5362: Boolean Cantor diagonal sequence with respect to $x$ |

Then
\begin{equation}
\forall \, n \in \mathbb{N} :
x_n \neq z
\end{equation}