ThmDex – An index of mathematical definitions, results, and conjectures.
Result R4092 on D3306: Real harmonic mean
Real arithmetic expression for real harmonic mean
Formulation 0
Let $x_1, \dots, x_N \in (0, \infty)$ each be a D993: Real number such that
(i) $a \in (0, \infty)$ is a D3306: Real harmonic mean of $x_1, \dots, x_N$
Then \begin{equation} a = \frac{N}{\sum_{n = 1}^N \frac{1}{x_n}} \end{equation}
Formulation 1
Let $x_1, \dots, x_N \in (0, \infty)$ each be a D993: Real number such that
(i) $a \in (0, \infty)$ is a D3306: Real harmonic mean of $x_1, \dots, x_N$
Then \begin{equation} a = N \left( \sum_{n = 1}^N \frac{1}{x_n} \right)^{-1} \end{equation}
Proofs
Proof 0
Let $x_1, \dots, x_N \in (0, \infty)$ each be a D993: Real number such that
(i) $a \in (0, \infty)$ is a D3306: Real harmonic mean of $x_1, \dots, x_N$
By hypothesis, $a$ satisfies \begin{equation} N \frac{1}{a} = \sum_{n = 1}^N \frac{1}{a} = \sum_{n = 1}^N \frac{1}{x_n} \end{equation} Diving each side by the positive integer $N \geq 1$, we obtain \begin{equation} \frac{1}{a} = \frac{1}{N} \sum_{n = 1}^N \frac{1}{x_n} = \frac{\sum_{n = 1}^N \frac{1}{x_n}}{N} \end{equation} Since neither side is zero, we may invert both sides to conclude with \begin{equation} a = \frac{1}{1/a} = \frac{1}{\frac{\sum_{n = 1}^N \frac{1}{x_n}}{N}} = \frac{N}{\sum_{n = 1}^N \frac{1}{x_n}} \end{equation} $\square$