ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Semigroup
Standard N-operation
Mean
Complex mean
Real mean
Real power mean
Definition D3306
Real harmonic mean
Formulation 0
Let $x_1, \dots, x_N \in (0, \infty)$ each be a D5407: Positive real number.
A D993: Real number $a \in (0, \infty)$ is a harmonic mean of $x_1, \dots, x_N$ if and only if \begin{equation} \sum_{n = 1}^N \frac{1}{a} = \sum_{n = 1}^N \frac{1}{x_n} \end{equation}
Formulation 1
Let $x_1, \dots, x_N \in (0, \infty)$ each be a D5407: Positive real number.
A D993: Real number $a \in (0, \infty)$ is a harmonic mean of $x_1, \dots, x_N$ if and only if \begin{equation} \underbrace{\frac{1}{a} + \frac{1}{a} + \cdots + \frac{1}{a}}_{N \text{ times}} = \frac{1}{x_1} + \frac{1}{x_2} + \cdots + \frac{1}{x_N} \end{equation}
Formulation 2
Let $x_1, \dots, x_N \in (0, \infty)$ each be a D5407: Positive real number.
A D993: Real number $a \in (0, \infty)$ is a harmonic mean of $x_1, \dots, x_N$ if and only if \begin{equation} \sum_{n = 1}^N a^{-1} = \sum_{n = 1}^N x^{-1}_n \end{equation}
Results
R4092: Real arithmetic expression for real harmonic mean
R4093: Real harmonic and arithmetic means are multiplicative inverses when arguments are