Let $Z \in \text{Random}(\mathbb{C})$ be a D4877: Random complex number such that
Let $p \in [0, \infty)$ be an D4767: Unsigned real number.
(i) | \begin{equation} \exists \, C \in (0, \infty) : |Z| \overset{a.s.}{\leq} C \end{equation} |
Then
\begin{equation}
\mathbb{E} |Z|^p
< \infty
\end{equation}