ThmDex – An index of mathematical definitions, results, and conjectures.
Euler's formulas for a real variable
Formulation 0
Let $y \in \mathbb{R}$ be a D993: Real number.
Let $i$ be the D371: Imaginary number.
Then
(1) \begin{equation} \exp(i y) = \cos y + i \sin y \end{equation}
(2) \begin{equation} \exp(- i y) = \cos y - i \sin y \end{equation}
Formulation 1
Let $y \in \mathbb{R}$ be a D993: Real number.
Let $i$ be the D371: Imaginary number.
Then
(1) \begin{equation} e^{i y} = \cos y + i \sin y \end{equation}
(2) \begin{equation} e^{- i y} = \cos y - i \sin y \end{equation}
Subresults
R424: Euler's identity
Proofs
Proof 1
Let $y \in \mathbb{R}$ be a D993: Real number.
Let $i$ be the D371: Imaginary number.
This result is a particular case of R5125: Euler's formulas. $\square$