ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Binary cartesian set product ▼ Binary relation ▼ Map ▼ Operation ▼ N-operation ▼ Binary operation ▼ Enclosed binary operation ▼ Groupoid ▼ Semigroup ▼ Standard N-operation ▼ Indexed sum ▼ Series ▼ Power series ▼ Convergent power series ▼ Natural complex exponential function
Definition D786
Standard natural complex exponential function

Let $\mathbb{C}$ be the D372: Set of complex numbers.
The standard natural complex exponential function is the D4881: Complex function $$\exp : \mathbb{C} \to \mathbb{C} \setminus \{ 0 \}, \quad \exp(z) = \lim_{N \to \infty} \sum_{n = 0}^N \frac{z^n}{n!}$$

Let $\mathbb{C}$ be the D372: Set of complex numbers.
The standard natural complex exponential function is the D4881: Complex function $$\exp : \mathbb{C} \to \mathbb{C} \setminus \{ 0 \}, \quad \exp(z) = \sum_{n = 0}^{\infty} \frac{z^n}{n!}$$

Let $\mathbb{C}$ be the D372: Set of complex numbers.
The standard natural complex exponential function is the D4881: Complex function $$\exp : \mathbb{C} \to \mathbb{C} \setminus \{ 0 \}, \quad \exp(z) = \frac{z^0}{0!} + \frac{z^1}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$$
Children
 ▶ Complex number polar representation
Results
 ▶ R5123 ▶ Euler's formulas for a real variable ▶ Euler's identity