Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Semigroup
Standard N-operation
Indexed sum
Series
Power series
Convergent power series
Natural complex exponential function
Standard natural complex exponential function
Complex number polar representation
Formulation 1
Let $z \in \mathbb{C}$ be a D1207: Complex number.
An D548: Ordered pair $(r, \theta)$ is a polar representation for $z$ if and only if
(1) \begin{equation} r \in [0, \infty) \end{equation}
(2) \begin{equation} \theta \in \mathbb{R} \end{equation}
(3) \begin{equation} z = r e^{i \theta} \end{equation}
Also known as
Complex number polar form
Results
» R2436: Polar representation of complex conjugate