ThmDex – An index of mathematical definitions, results, and conjectures.
Polar representation of complex conjugate
Formulation 0
Let $z \in \mathbb{C}$ be a D1207: Complex number such that
(i) $z = r e^{i \theta}$ is a D3949: Complex number polar representation for $z$
Then \begin{equation} \overline{z} = r e^{- i \theta} \end{equation}
Proofs
Proof 0
Let $z \in \mathbb{C}$ be a D1207: Complex number such that
(i) $z = r e^{i \theta}$ is a D3949: Complex number polar representation for $z$
Using R425: Euler's formulas for a real variable, we have \begin{equation} z = r e^{i \theta} = r \cos \theta + i r \sin \theta = (r \cos \theta, r \sin \theta) \end{equation} Using the definition of complex conjugation and the Euler formula in the other direction, we thus have \begin{equation} \overline{z} = \overline{(r \cos \theta, r \sin \theta)} = (r \cos \theta, - r \sin \theta) = r \cos \theta - i r \sin \theta = r e^{- i \theta} \end{equation} $\square$