Let $M = (X, \mathcal{F}, \mu)$ be a D1158: Measure space.
Let $E_1, E_2, E_3 \in \mathcal{F}$ each be a D1109: Measurable set in $M$ such that
Let $E_1, E_2, E_3 \in \mathcal{F}$ each be a D1109: Measurable set in $M$ such that
(i) | \begin{equation} \mu(E_1), \mu(E_2), \mu(E_3) < \infty \end{equation} |
Then
\begin{equation}
\begin{split}
\mu(E_1 \cup E_2 \cup E_3)
& = \mu(E_1) + \mu(E_2) + \mu(E_3) \\
& \quad - \mu(E_1 \cap E_2) - \mu(E_1 \cap E_3) - \mu(E_2 \cap E_3) \\
& \quad + \mu(E_1 \cap E_2 \cap E_3)
\end{split}
\end{equation}