ThmDex – An index of mathematical definitions, results, and conjectures.
Two disjoint events are not necessarily independent
Formulation 0
Let $P = (\{ 0 ,1 \}, \mathcal{F}, \mathbb{P})$ be the D5511: Standard single boolean trial probability space.
Then
(1) \begin{equation} \{ 0 \}, \{ 1 \} \in \mathcal{F} \end{equation}
(2) \begin{equation} \{ 0 \} \cap \{ 1 \} = \emptyset \end{equation}
(3) \begin{equation} \mathbb{P}(\{ 0 \} \cap \{ 1 \}) = \mathbb{P}(\emptyset) = 0 \neq \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = \mathbb{P} \{ 0 \} \mathbb{P} \{ 1 \} \end{equation}
Proofs
Proof 0
Let $P = (\{ 0 ,1 \}, \mathcal{F}, \mathbb{P})$ be the D5511: Standard single boolean trial probability space.
Clear. $\square$