Let $M = (X, \mathcal{F}, \mu)$ be a D1158: Measure space such that
(i) | $E_0, E_1, E_2, \ldots \in \mathcal{F}$ are each a D1109: Measurable set in $M$ |
(ii) | \begin{equation} \forall \, n \in \mathbb{N} : \mu(E_n) = 0 \end{equation} |
Then
\begin{equation}
\mu \left( \bigcup_{n \in \mathbb{N}} E_n \right)
= 0
\end{equation}