Let $P = (\Omega, \mathcal{F}, \mathbb{P}, T)$ be a D2839: Probability-preserving system such that
(i) | $P$ is an D4492: Ergodic probability-preserving system |
(ii) | $E \in \mathcal{F}$ is an D1716: Event in $P$ |
Then
\begin{equation}
\lim_{N \to \infty} \frac{ \# \left\{ n \in \{ 0, \ldots, N - 1 \} : T^n \in E \right\} }{N}
\overset{a.s.}{=} \mathbb{P}(E)
\end{equation}