ThmDex – An index of mathematical definitions, results, and conjectures.
Standard gaussian real density function is an even function
Formulation 0
Let $f : \mathbb{R} \to \mathbb{R}$ be a D2864: Real gaussian density function such that
(i) \begin{equation} f(t) = \frac{1}{\sqrt{2 \pi}} e^{- \frac{1}{2} t^2} \end{equation}
Let $x \in \mathbb{R}$ be a D993: Real number.
Then \begin{equation} f(-x) = f(x) \end{equation}
Proofs
Proof 0
Let $f : \mathbb{R} \to \mathbb{R}$ be a D2864: Real gaussian density function such that
(i) \begin{equation} f(t) = \frac{1}{\sqrt{2 \pi}} e^{- \frac{1}{2} t^2} \end{equation}
Let $x \in \mathbb{R}$ be a D993: Real number.
This result is a particular case of R4597: Centred gaussian real density function is an even function. $\square$