ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Binary cartesian set product ▼ Binary relation ▼ Map ▼ Function ▼ Measure ▼ Real measure ▼ Euclidean real measure ▼ Complex measure ▼ Basic measure ▼ Unsigned basic measure ▼ Unsigned basic integral measure ▼ Radon-Nikodym derivative ▼ Probability density function
Definition D2864
Real gaussian density function

The real gaussian density function with parameter $(\mu, \sigma) \in \mathbb{R} \times (0, \infty)$ is the D4364: Real function $$\mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1}{\sqrt{2 \pi \sigma^2}} \exp \Bigg[ - \frac{1}{2} \Bigg( \frac{x - \mu}{\sigma} \Bigg)^2 \Bigg]$$

The real gaussian density function with parameters $\mu \in \mathbb{R}$ and $\sigma \in (0, \infty)$ is the D4364: Real function $$\mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1}{\sqrt{2 \pi \sigma^2}} e^{- \frac{1}{2} \big( \frac{x - \mu}{\sigma} \big)^2}$$
Children
 ▶ Euclidean real gaussian density function ▶ Standard real gaussian density function