ThmDex – An index of mathematical definitions, results, and conjectures.
 ▼ Set of symbols ▼ Alphabet ▼ Deduction system ▼ Theory ▼ Zermelo-Fraenkel set theory ▼ Set ▼ Binary cartesian set product ▼ Binary relation ▼ Map ▼ Function ▼ Measure ▼ Real measure ▼ Euclidean real measure ▼ Complex measure ▼ Basic measure ▼ Unsigned basic measure ▼ Unsigned basic integral measure ▼ Radon-Nikodym derivative ▼ Probability density function ▼ Real gaussian density function
Definition D2719
Standard real gaussian density function

The standard real gaussian density function is the D4364: Real function $$\mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1}{\sqrt{2 \pi}} \exp \bigg( - \frac{1}{2} x^2 \bigg)$$

The standard real gaussian density function is the D4364: Real function $$\mathbb{R} \to \mathbb{R}, \quad x \mapsto (2 \pi)^{- 1/2} e^{- x^2 / 2}$$

The standard real gaussian density function is the D4364: Real function $$\mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1}{\sqrt{2 \pi}} e^{- \frac{x^2}{2}}$$