ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Function
Measure
Real measure
Euclidean real measure
Complex measure
Basic measure
Unsigned basic measure
Unsigned basic integral measure
Radon-Nikodym derivative
Probability density function
Real gaussian density function
Definition D2718
Euclidean real gaussian density function
Formulation 3
Let $\Sigma \in \mathbb{R}^{N \times N}$ be a D4571: Real matrix such that
(i) \begin{equation} \text{det} \Sigma \neq 0 \end{equation}
(ii) \begin{equation} \Sigma^T = \Sigma \end{equation}
(iii) $\Sigma^{-1}$ is an D2089: Inverse matrix for $\Sigma$
The euclidean real gaussian density function on $\mathbb{R}^{N \times 1}$ with parameters $\mu \in \mathbb{R}^{N \times 1}$ and $\Sigma$ is the D4364: Real function \begin{equation} \mathbb{R}^{N \times 1} \to \mathbb{R}, \quad x \mapsto \frac{1}{\sqrt{(2 \pi)^n \text{det} \Sigma}} \exp \left( - \frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) \end{equation}
Children
D2870: Standard euclidean real gaussian density function