Let $\varepsilon > 0$. By definition
\begin{equation}
\eta_{\varepsilon}(x)
= \varepsilon^{-N} \phi \left( \frac{x}{\varepsilon} \right)
\end{equation}
where $\phi(t) = e^{- \pi |t|^2}$. Consider an endomorphism $\varphi : \mathbb{R}^N \to \mathbb{R}^N$ given by $\varphi(x) = \varepsilon x$. This function is differentiable with $|\mathsf{det}(D \varphi)| = \varepsilon^N$. Instituting a change of variables in the sense of
R2143: Differentiable change of variables for signed Lebesgue integral with respect to this endomorphism and applying results
yields
\begin{equation}
\begin{split}
\int_{\mathbb{R}^N} \eta_{\varepsilon}(x) \, \ell(d x)
& = \varepsilon^{-N} \int_{\mathbb{R}^N} \phi \left( \frac{x}{\varepsilon} \right) \, \ell(d x) \\
& = \varepsilon^{-N} \int_{\mathbb{R}^N} \phi(x) |\mathsf{det}(D \varphi)| \, \ell(d x) \\
& = \varepsilon^{-N} \int_{\mathbb{R}^N} \phi(x) \varepsilon^N \, \ell(d x) \\
& = \varepsilon^{-N} \varepsilon^N \int_{\mathbb{R}^N} \phi(x) \, \ell(d x) \\
& = \int_{\mathbb{R}^N} \phi(x) \, \ell(d x) \\
& = 1
\end{split}
\end{equation}
$\square$