Let $X$, $Y$, and $Z$ each be a D11: Set such that
(i) | $X \times Y \times Z$ and $(X \times Y) \times Z$ are each a D326: Cartesian product |
(ii) | \begin{equation} f : X \times Y \times Z \to (X \times Y) \times Z, \quad f(x, y, z) = ((x, y), z) \end{equation} |
(iii) | \begin{equation} g : (X \times Y) \times Z \to X \times Y \times Z, \quad g((x, y), z) = (x, y, z) \end{equation} |
Then
(1) | $f$ is a D468: Bijective map |
(2) | $g$ is an D216: Inverse map for $f$ |