ThmDex – An index of mathematical definitions, results, and conjectures.
Result R4638 on D422: Matrix trace
Complex-linearity of complex matrix trace
Formulation 0
Let $A, B \in \mathbb{C}^{N \times M}$ each be a D999: Complex matrix.
Let $\alpha, \beta \in \mathbb{C}$ each be a D1207: Complex number.
Then \begin{equation} \mathsf{tr}(\alpha A + \beta B) = \alpha \mathsf{tr}(A) + \beta \mathsf{tr}(B) \end{equation}
Subresults
R3757: Linearity of basic real matrix trace
Proofs
Proof 0
Let $A, B \in \mathbb{C}^{N \times M}$ each be a D999: Complex matrix.
Let $\alpha, \beta \in \mathbb{C}$ each be a D1207: Complex number.
We have \begin{equation} \begin{split} \mathsf{tr}(\alpha A + \beta B) & = \sum_{j = 1}^{\min(N, M)} (\alpha a_{i, j} + \beta b_{i, j}) \\ & = \sum_{j = 1}^{\min(N, M)} \alpha a_{i, j} + \sum_{j = 1}^{\min(N, M)} \beta b_{i, j} \\ & = \alpha \sum_{j = 1}^{\min(N, M)} a_{i, j} + \beta \sum_{j = 1}^{\min(N, M)} b_{i, j} \\ \end{split} \end{equation} $\square$