ThmDex – An index of mathematical definitions, results, and conjectures.
Linearity of basic real matrix trace
Formulation 0
Let $A, B \in \mathbb{R}^{N \times M}$ each be a D4571: Real matrix.
Let $\alpha, \beta \in \mathbb{R}$ each be a D993: Real number.
Then \begin{equation} \mathsf{tr}(\alpha A + \beta B) = \alpha \mathsf{tr}(A) + \beta \mathsf{tr}(B) \end{equation}
Proofs
Proof 0
Let $A, B \in \mathbb{R}^{N \times M}$ each be a D4571: Real matrix.
Let $\alpha, \beta \in \mathbb{R}$ each be a D993: Real number.
This result is a particular case of R4638: Complex-linearity of complex matrix trace. $\square$