Let $X_1, X_2, X_3, \ldots \in \text{Random}(\Omega \to \mathbb{R})$ each be a D3161: Random real number such that
Let $x \in \mathbb{R}$ be a D993: Real number.
(i) | $X_1, X_2, X_3, \ldots$ is an D3358: I.I.D. random collection |
Then
\begin{equation}
\lim_{N \to \infty} \frac{1}{N} \sum_{n = 1}^N I_{\{ X_n \leq x \}}
\overset{a.s.}{=} \mathbb{P}(X_1 \leq x)
\end{equation}