Definitions
,
Results
,
Conjectures
▾
Set of symbols
▾
Alphabet
▾
Deduction system
▾
Theory
▾
Zermelo-Fraenkel set theory
▾
Set
▾
Subset
▾
Power set
▾
Hyperpower set sequence
▾
Hyperpower set
▾
Hypersubset
▾
Subset algebra
▾
Subset structure
▾
Measurable space
▾
Measure space
▾
Probability space
▾
Independent event collection
▾
Independent collection of event collections
▾
Independent collection of sigma-algebras
▾
Independent random collection
I.I.D. random collection
Formulation 0
A
D1721: Random collection
$X : J \to \text{Random}(\Omega \to \Xi)$ is
independent and identically distributed
if and only if
(1)
$X$ is an
D2713: Independent random collection
(2)
$X$ is an
D3357: Identically distributed random collection
Child definitions
»
D5289: Strong white noise random real collection
Results
»
R3598: Wald's first equation under independence
»
R2368: I.I.D. real strong law of large numbers with the identity index sequence
»
R2410: I.I.D. real weak law of large numbers under finite second absolute moments
»
R4684: I.I.D. weak law of large numbers for random real numbers
»
R4685: I.I.D. weak law of large numbers for random real numbers of finite first absolute moments
»
R5404: I.I.D. real central limit theorem
»
R5405: Standard I.I.D. real central limit theorem
»
R5408: I.I.D. real strong law of large numbers
»
R5412:
»
R5413:
»
R5416:
»
R5418: Counterexample to Wald's first equation when independence not satisfied
»
R5419: Wald's first equation
»
R5423: Wald's second equation under independence
»
R5424: