Let $X_1, X_2, X_3, \dots \in \text{Random}(\mathbb{R})$ each be a
D3161: Random real number such that
(i) |
$X_1, X_2, X_3, \dots$ is an D3358: I.I.D. random collection
|
(ii) |
\begin{equation}
\mathbb{E} |X_1|^2 \in (0, \infty)
\end{equation}
|
(iii) |
\begin{equation}
\mu
: = \mathbb{E} X_1
\end{equation}
|
(iv) |
\begin{equation}
\sigma^2
: = \text{Var} X_1
\end{equation}
|
Let $f : \{ 1, 2, 3, \ldots \} \to \{1, 2, 3, \ldots \}$ be a
D5406: Positive integer function such that
(i) |
\begin{equation}
\lim_{N \to \infty} f(N)
= \infty
\end{equation}
|
Then
\begin{equation}
\sum_{n = 1}^{f(N)} \frac{X_n - \mu}{\sqrt{\sigma^2 f(N)}}
\overset{d}{\longrightarrow} \text{Gaussian}(0, 1)
\quad \text{ as } \quad
N \to \infty
\end{equation}