ThmDex – An index of mathematical definitions, results, and conjectures.
Formulation 0
Let $f : \mathbb{R} \to (0, \infty)$ be a D4364: Real function such that
(i) \begin{equation} f(x) = \frac{1}{1 + e^{- x}} \end{equation}
Then \begin{equation} 1 - f(x) = f(-x) \end{equation}
Proofs
Proof 0
Let $f : \mathbb{R} \to (0, \infty)$ be a D4364: Real function such that
(i) \begin{equation} f(x) = \frac{1}{1 + e^{- x}} \end{equation}
We have \begin{equation} \begin{split} 1 - f(x) = 1 - \frac{1}{1 + e^{- x}} & = \frac{1 + e^{- x}}{1 + e^{- x}} - \frac{1}{1 + e^{- x}} \\ & = \frac{1 + e^{- x} - 1}{1 + e^{- x}} \\ & = \frac{e^{- x}}{1 + e^{- x}} \\ & = \frac{e^x}{e^x} \frac{e^{- x}}{1 + e^{- x}} \\ & = \frac{1}{e^x + 1} \\ & = f(-x) \end{split} \end{equation} $\square$