Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) | $X_1, Y_1, \, \ldots, \, X_N, Y_N : \Omega \to \mathbb{R}^D$ are each a D4383: Random euclidean real number on $P$ |
Then
\begin{equation}
\mathbb{P} \left( \sum_{n = 1}^N X_n \neq \sum_{n = 1}^N Y_n \right)
\leq \mathbb{P} \left( \bigcup_{n = 1}^N \{ X_n \neq Y_n \} \right)
\end{equation}