Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) | $\mathcal{G} \subseteq \mathcal{F}$ is a D470: Subsigma-algebra of $\mathcal{F}$ on $\Omega$ |
(ii) | $X, Y : \Omega \to \mathbb{R}$ are each a D3161: Random real number on $P$ |
(iii) | \begin{equation} \mathbb{E} |X|^2, \mathbb{E} |Y|^2 < \infty \end{equation} |
Then
\begin{equation}
\text{Cov}(X, Y \mid \mathcal{G})
= \mathbb{E}(X Y \mid \mathcal{G}) + \mathbb{E}(X \mid \mathcal{G}) \mathbb{E}(Y \mid \mathcal{G})
\end{equation}