ThmDex – An index of mathematical definitions, results, and conjectures.
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $Z : \Omega \to \Xi$ is a D202: Random variable on $P$
(ii) $X, Y : \Omega \to \mathbb{R}$ are each a D3161: Random real number on $P$
(iii) \begin{equation} \mathbb{E} |X|^2, \mathbb{E} |Y|^2 < \infty \end{equation}
Then \begin{equation} \text{Cov}(X, Y \mid Z) = \mathbb{E}(X Y \mid Z) + \mathbb{E}(X \mid Z) \mathbb{E}(Y \mid Z) \end{equation}
Proofs
Proof 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $Z : \Omega \to \Xi$ is a D202: Random variable on $P$
(ii) $X, Y : \Omega \to \mathbb{R}$ are each a D3161: Random real number on $P$
(iii) \begin{equation} \mathbb{E} |X|^2, \mathbb{E} |Y|^2 < \infty \end{equation}
This result is a particular case of R4786: Real conditional covariance partition into conditional moments. $\square$