Let $a \in \mathbb{R}$. If $a < 0$, then clearly $\mathbb{P} ( \min(T_1, \ldots, T_N) \leq a ) = 0$, so assume that $a \in [0, \infty)$. We have by independence
\begin{equation}
\begin{split}
\mathbb{P} ( \min(T_1, \ldots, T_N) > a )
& = \mathbb{P} (T_1 > a, \ldots, T_N > a) \\
& = \prod_{n = 1}^N \mathbb{P}(T_n > a) \\
& = \prod_{n = 1}^N \int^{\infty}_a \theta_n e^{- \theta_n t} \, d t \\
& = \prod_{n = 1}^N \left[ - e^{\theta_n t} \right]^{\infty}_a
= \prod_{n = 1}^N \left( 0 + e^{- \theta_n a} \right)
= \prod_{n = 1}^N e^{- \theta_n a}
= e^{- \left(\sum_{n = 1}^N \theta_n \right) a}
\end{split}
\end{equation}
That is
\begin{equation}
\mathbb{P} ( \min(T_1, \ldots, T_N) \leq a )
= e^{- \left(\sum_{n = 1}^N \theta_n \right) a}
\end{equation}
The claim thus now follows from
R4795: Real calculus expression for distribution function of exponential random positive real number. $\square$