ThmDex – An index of mathematical definitions, results, and conjectures.
Homomorphism property of standard logarithm function in the binary case
Formulation 0
Let $\log_a$ be the D866: Standard real logarithm function in base $a \in (0, \infty) \setminus \{ 1 \}$.
Let $x, y \in (0, \infty)$ each be a D5407: Positive real number.
Then \begin{equation} \log_a (x y) = \log_a x + \log_a y \end{equation}
Proofs
Proof 0
Let $\log_a$ be the D866: Standard real logarithm function in base $a \in (0, \infty) \setminus \{ 1 \}$.
Let $x, y \in (0, \infty)$ each be a D5407: Positive real number.
This result is a particular case of R4831: Homomorphism property of standard logarithm function. $\square$