Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Binary endorelation
Preordering relation
Partial ordering relation
Partially ordered set
Closed interval
Implicit interval partition
Implicit basic real interval partition
Closed real interval tagged partition
Stieltjes sum
Riemann sum
Riemann integrable real function
Real Riemann integral
Standard natural real logarithm function
Standard real logarithm function
Formulation 0
Let $x \mapsto \log(x)$ be the D865: Standard natural real logarithm function.
The standard real logarithm function in base $a \in (0, \infty) \setminus \{ 1 \}$ is the D5482: Positive real function \begin{equation} \log_a : (0, \infty) \to \mathbb{R}, \quad \log_a(x) = \frac{\log x}{\log a} \end{equation}
Formulation 1
Let $x \mapsto \log_e(x)$ be the D865: Standard natural real logarithm function.
The standard real logarithm function in base $a \in (0, \infty) \setminus \{ 1 \}$ is the D5482: Positive real function \begin{equation} \log_a : (0, \infty) \to \mathbb{R}, \quad \log_a(x) = \frac{\log_e x}{\log_e a} \end{equation}
Child definitions
» D5706: Real entropy function
Results
» R3232: Value of standard logarithm function at its parameter value
» R4675: Standard real logarithm function grows linearly near 1
» R4826: Logarithm of a ratio
» R4830: Change of base formula for logarithm function
» R4831: Homomorphism property of standard logarithm function
» R4832: Homomorphism property of standard logarithm function in the binary case
» R4855: Reflection property of standard logarithm function
» R4857: Standard logarithm of a positive real number raised to an integer power