Let $\log_a$ be the D866: Standard real logarithm function in base $a \in (0, \infty) \setminus \{ 1 \}$.
Let $x \in (0, \infty)$ be a D5407: Positive real number.
Let $N \in \mathbb{Z}$ be a D995: Integer.
Let $x \in (0, \infty)$ be a D5407: Positive real number.
Let $N \in \mathbb{Z}$ be a D995: Integer.
Then
\begin{equation}
\log_a x^N
= N \log_a x
\end{equation}