Let $\log_a$ be the D866: Standard real logarithm function in base $a \in (0, \infty) \setminus \{ 1 \}$.
Let $x, y \in (0, \infty)$ each be a D5407: Positive real number.
Let $x, y \in (0, \infty)$ each be a D5407: Positive real number.
Then
\begin{equation}
\log_a \frac{x}{y}
= - \log_a \frac{y}{x}
\end{equation}