Let $f : \mathbb{R} \to \mathbb{R}$ be a
D4364: Real function such that
(i) |
\begin{equation}
\forall \, x \in \mathbb{R} :
f(x) = x^2
\end{equation}
|
Let $L : \mathbb{R} \to \mathbb{R}$ be a
D4364: Real function such that
(i) |
$x_0 \in \mathbb{R}$ is a D993: Real number
|
(ii) |
\begin{equation}
\forall \, x \in \mathbb{R} :
L(x) = 2 x_0 x
\end{equation}
|
Fix $x, x_0 \in \mathbb{R}$ such that $x \neq x_0$. Then
\begin{equation}
\begin{split}
\frac{|f(x) - f(x_0) - L(x - x_0)|}{|x - x_0|}
& = \frac{|x^2 - x^2_0 - 2 x_0 (x - x_0)|}{|x - x_0|} \\
& = \frac{|(x + x_0) (x - x_0) - 2 x_0 (x - x_0)|}{|x - x_0|} \\
& = \frac{| x - x_0 ||(x + x_0) - 2 x_0 |}{|x - x_0|} \\
& = |(x + x_0) - 2 x_0 | \\
& \to |2 x_0 - 2 x_0| \\
& = 0
\end{split}
\end{equation}
as $x \to x_0$. The claim follows. $\square$