ThmDex – An index of mathematical definitions, results, and conjectures.
Derivative for euclidean real self-dot product function
Formulation 0
Let $f : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D4364: Real function such that
(i) \begin{equation} f(x) = x^T x \end{equation}
Let $L : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D4364: Real function such that
(i) $x_0 \in \mathbb{R}^{N \times 1}$ is a D5200: Real column matrix
(ii) \begin{equation} L(x) = 2 x^T_0 x \end{equation}
Then $L$ is a D5681: Real function derivative for $f$ at $x_0$.
Formulation 1
Let $f : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D4364: Real function such that
(i) \begin{equation} f(x) = \Vert x \Vert^2_2 \end{equation}
Let $L : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D4364: Real function such that
(i) $x_0 \in \mathbb{R}^{N \times 1}$ is a D5200: Real column matrix
(ii) \begin{equation} L(x) = 2 x^T_0 x \end{equation}
Then $L$ is a D5681: Real function derivative for $f$ at $x_0$.
Subresults
R5537: Derivative function for euclidean real self-dot product function
Proofs
Proof 0
Let $f : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D4364: Real function such that
(i) \begin{equation} f(x) = x^T x \end{equation}
Let $L : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D4364: Real function such that
(i) $x_0 \in \mathbb{R}^{N \times 1}$ is a D5200: Real column matrix
(ii) \begin{equation} L(x) = 2 x^T_0 x \end{equation}
This result is a particular case of R4912: Strong derivative for symmetric euclidean real quadratic form where $A$ is an identity matrix. $\square$