Let $f : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D4364: Real function such that
Let $L : \mathbb{R}^{N \times 1} \to \mathbb{R}$ be a D4364: Real function such that
(i) | \begin{equation} \exists \, A \in \mathbb{R}^{N \times N} : \forall \, x \in \mathbb{R}^{N \times 1} : f(x) = x^T A x \end{equation} |
(i) | $x_0 \in \mathbb{R}^{N \times 1}$ is a D5200: Real column matrix |
(ii) | \begin{equation} \forall \, x \in \mathbb{R}^{N \times 1} : L(x) = (A x_0 + A^T x_0)^T x \end{equation} |
Then $L$ is a D5681: Real function derivative for $f$ at $x_0$.