ThmDex – An index of mathematical definitions, results, and conjectures.
Determinant of an upper triangular complex matrix
Formulation 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) $A$ is an D5948: Upper triangular complex matrix
(ii) \begin{equation} A = \begin{bmatrix} A_{1, 1} & A_{1, 2} & \cdots & A_{1, N} \\ 0 & A_{2, 2} & \vdots & A_{2, N} \\ \vdots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{N, N} \end{bmatrix} \end{equation}
Then \begin{equation} \text{Det} A = \prod_{n = 1}^N A_{n, n} \end{equation}
Also known as
Determinant of an upper triangular complex square matrix equals the product of the diagonal elements, Only the diagonal contributes to the determinant of an upper triangular complex matrix
Proofs
Proof 0
Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix such that
(i) $A$ is an D5948: Upper triangular complex matrix
(ii) \begin{equation} A = \begin{bmatrix} A_{1, 1} & A_{1, 2} & \cdots & A_{1, N} \\ 0 & A_{2, 2} & \vdots & A_{2, N} \\ \vdots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_{N, N} \end{bmatrix} \end{equation}
This result is a particular case of R5072: Determinant of a triangular complex matrix. $\square$