Let $A \in \mathbb{C}^{N \times N}$ be a D6159: Complex square matrix.
Let $\lambda \in \mathbb{C}$ be a D1207: Complex number.
Let $\lambda \in \mathbb{C}$ be a D1207: Complex number.
Then the following statements are equivalent
(1) | \begin{equation} \exists \, z \in \mathbb{C}^{N \times 1} \setminus \{ \boldsymbol{0} \} : A z = \lambda z \end{equation} |
(2) | \begin{equation} \text{Det}(A - \lambda I_N) = 0 \end{equation} |