ThmDex – An index of mathematical definitions, results, and conjectures.
Complex matrix determinant zero iff some nonzero vector is mapped to zero
Formulation 0
Let $A \in \mathbb{C}^{N \times N}$ be a D999: Complex matrix.
Then the following statements are equivalent
(1) \begin{equation} \text{det}(A) = 0 \end{equation}
(2) \begin{equation} \exists \, z \in \mathbb{C}^{N \times 1} \setminus \{ \boldsymbol{0} \} : A z = \boldsymbol{0} \end{equation}
Subresults
R5079: Characterisation of complex matrix eigenvalues in terms of characteristic polynomial
Proofs
Proof 0
Let $A \in \mathbb{C}^{N \times N}$ be a D999: Complex matrix.
This result is a consequence of R5080: Complex matrix determinant nonzero iff kernel is trivial. $\square$