ThmDex – An index of mathematical definitions, results, and conjectures.
Eigenvalues of a symmetric real matrix are real-valued
Formulation 0
Let $A \in \mathbb{R}^{N \times N}$ be a D4571: Real matrix such that
(i) \begin{equation} A^T = A \end{equation}
(ii) $\lambda \in \mathbb{C}$ is a D1207: Complex number
(iii) $x \in \mathbb{R}^{N \times 1} \setminus \{ \boldsymbol{0} \}$ is a D5200: Real column matrix
(iv) \begin{equation} A x = \lambda x \end{equation}
Then \begin{equation} \lambda \in \mathbb{R} \end{equation}
Proofs
Proof 0
Let $A \in \mathbb{R}^{N \times N}$ be a D4571: Real matrix such that
(i) \begin{equation} A^T = A \end{equation}
(ii) $\lambda \in \mathbb{C}$ is a D1207: Complex number
(iii) $x \in \mathbb{R}^{N \times 1} \setminus \{ \boldsymbol{0} \}$ is a D5200: Real column matrix
(iv) \begin{equation} A x = \lambda x \end{equation}
This result is a particular case of R5084: Eigenvalues of a hermitian complex matrix are real-valued. $\square$