ThmDex – An index of mathematical definitions, results, and conjectures.
Number of boolean functions on a boolean cartesian product
Formulation 0
Let $N \in \{ 1, 2, 3, \ldots \}$ be a D5094: Positive integer such that
(i) $\mathcal{M}$ is the D68: Set of maps from $\{ 0, 1 \}^N$ to $\{ 0, 1 \}$
Then \begin{equation} |\mathcal{M}| = 2^{2^N} \end{equation}
Formulation 1
Let $\mathbb{B} = \{ 0, 1 \}$ be the D217: Set of boolean numbers.
Let $N \in \{ 1, 2, 3, \ldots \}$ be a D5094: Positive integer.
Then \begin{equation} \# \left\{ f \mid f : \mathbb{B}^N \to \mathbb{B} \right\} = 2^{2^N} \end{equation}
Proofs
Proof 0
Let $N \in \{ 1, 2, 3, \ldots \}$ be a D5094: Positive integer such that
(i) $\mathcal{M}$ is the D68: Set of maps from $\{ 0, 1 \}^N$ to $\{ 0, 1 \}$
This result is a particular case of R4314: Number of boolean functions on a finite set. $\square$