Let $U \subseteq \mathbb{R}^D$ be a D5007: Standard open euclidean real set such that
(i) | \begin{equation} U \neq \emptyset \end{equation} |
(ii) | $U$ is a D5623: Convex euclidean real set |
(iii) | $f : U \to \mathbb{R}$ is a D5606: Subconvex real function |
(iv) | $f : U \to \mathbb{R}$ is a D5614: Differentiable real function |
(v) | \begin{equation} x \in U \end{equation} |
(vi) | \begin{equation} \nabla f(x) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \end{equation} |
Then
\begin{equation}
\forall \, y \in U :
f(x) \leq f(y)
\end{equation}