Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Ringoid
Semiring
Ring
Left ring action
Module
Linear combination
Linear map
Affine map
Convex map
Superconvex map
Superconvex function
Subconvex real function
Formulation 0
Let $C \subseteq \mathbb{R}^D$ be a D5623: Convex euclidean real set.
A D4364: Real function $f : C \to \mathbb{R}$ is subconvex if and only if \begin{equation} \forall \, N \in 1, 2, 3, \ldots : \forall \, x_1, \ldots, x_N \in C : \forall \, r_1, \ldots, r_N \in \mathbb{R} \left[ r_1, \dots, r_N \geq 0 \text{ and } \sum_{n = 1}^N r_n = 1 \quad \implies \quad f \left( \sum_{n = 1}^N r_n x_n \right) \leq \sum_{n = 1}^N r_n f(x_n) \right] \end{equation}
Child definitions
» D5738: Strictly subconvex real function
Results
» R4869: Characterisation of subconvex real functions
» R5144: Vanishing gradient identifies a minimizer for differentiable subconvex real function
» R5142: Subconvex real function iff first-order Taylor approximates underestimates function globally
» R5147: Reflection of standard natural real logarithm function is subconvex
» R5150: Global minimizer of subconvex real function iff zero is a subgradient
» R5160: Subconvex real function need not have a minimizer
» R5162: Minimizer need not be unique for a subconvex real function