ThmDex – An index of mathematical definitions, results, and conjectures.
Set of symbols
Alphabet
Deduction system
Theory
Zermelo-Fraenkel set theory
Set
Binary cartesian set product
Binary relation
Map
Operation
N-operation
Binary operation
Enclosed binary operation
Groupoid
Ringoid
Semiring
Ring
Left ring action
Module
Linear combination
Linear map
Affine map
Convex map
Superconvex map
Superconvex function
Definition D5606
Subconvex real function
Formulation 0
Let $C \subseteq \mathbb{R}^D$ be a D5623: Convex euclidean real set.
A D4364: Real function $f : C \to \mathbb{R}$ is subconvex if and only if \begin{equation} \forall \, N \in 1, 2, 3, \ldots : \forall \, x_1, \ldots, x_N \in C : \forall \, r_1, \ldots, r_N \in \mathbb{R} \left[ r_1, \dots, r_N \geq 0 \text{ and } \sum_{n = 1}^N r_n = 1 \quad \implies \quad f \left( \sum_{n = 1}^N r_n x_n \right) \leq \sum_{n = 1}^N r_n f(x_n) \right] \end{equation}
Children
D5738: Strictly subconvex real function
Results
R4869: Characterisation of subconvex real functions
R5162: Minimizer need not be unique for a subconvex real function
R5160: Subconvex real function need not have a minimizer
R5144: Vanishing gradient identifies a minimizer for differentiable subconvex real function