Let $Z_1, \ldots, Z_N \in \text{Gaussian}(0, 1)$ each be a D211: Standard gaussian random real number such that
(i) | \begin{equation} N \in \{ 2, 3, 4, \ldots \} \end{equation} |
(ii) | $Z_1, \ldots, Z_N$ is an D2713: Independent random collection |
(iii) | \begin{equation} S : = \left( \frac{1}{N - 1} \sum_{n = 1}^N Z^2_n \right)^{1 / 2} \end{equation} |
(iv) | $\chi \in \text{ChiSquared}(N)$ is a D212: Chi-squared random unsigned real number |
Then
\begin{equation}
S
\overset{d}{=} \left( \frac{1}{N - 1} \chi \right)^{1 / 2}
\end{equation}