ThmDex – An index of mathematical definitions, results, and conjectures.
Adding the same random real number need not preserve equality in distribution
Formulation 0
Let $X \in \text{Gaussian}(0, 1)$ be a D211: Standard gaussian random real number such that
(i) \begin{equation} Y, Z : = - X \end{equation}
Then
(1) \begin{equation} X \overset{d}{=} Y \end{equation}
(2) \begin{equation} X + Z \overset{d}{\neq} Y + Z \end{equation}
Proofs
Proof 0
Let $X \in \text{Gaussian}(0, 1)$ be a D211: Standard gaussian random real number such that
(i) \begin{equation} Y, Z : = - X \end{equation}
The first claim is established in R3923: Standard gaussian random real number is symmetric about zero. As for the second claim, we have \begin{equation} X + Z = X - X = 0 \end{equation} surely, as well as \begin{equation} Y + Z = - X - X = - 2 X \end{equation} and clearly $0 \overset{d}{\neq} - 2 X$. $\square$