ThmDex – An index of mathematical definitions, results, and conjectures.
Expectation of an indicator random boolean number
Formulation 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $E \in \mathcal{F}$ is an D1716: Event in $P$
(ii) $I_E : \Omega \to \mathbb{R}$ is an D2796: Indicator random boolean number on $P$ with respect to $E$
Then \begin{equation} \mathbb{E} I_E = \mathbb{P}(E) \end{equation}
Proofs
Proof 0
Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
(i) $E \in \mathcal{F}$ is an D1716: Event in $P$
(ii) $I_E : \Omega \to \mathbb{R}$ is an D2796: Indicator random boolean number on $P$ with respect to $E$
This result is a particular case of R2798: Moments of an indicator random boolean number. $\square$