Let $P = (\Omega, \mathcal{F}, \mathbb{P})$ be a D1159: Probability space such that
Let $n \in \{ 1, 2, 3, \ldots \}$ be a D5094: Positive integer.
(i) | $E \in \mathcal{F}$ is an D1716: Event in $P$ |
(ii) | $I_E : \Omega \to \mathbb{R}$ is an D2796: Indicator random boolean number on $P$ with respect to $E$ |
Then
\begin{equation}
\mathbb{E} I^n_E
= \mathbb{P}(E)
\end{equation}